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A Qualitative Study of Engineering Students'

Reasoning About Statistical Variability

Introduction

Every aircraft you have ever flown on has been designed using probabilistically-flawed,
potentially dangerous criteria [1]. These criteria have been in-use since at least the 1960’s [2],
but their limitations were only formally recognized recently. While prior work has thoroughly
articulated the technical issues in these flawed design criteria [1], [3], the present work aims to
support formal study of how engineers recognize and treat variability, with an eye towards
understanding how the aforementioned flaws evaded notice for over a half-century.

In this work, we present a novel theoretical framework and initial empirical results. We use the
proposed cause-source framework to analyze aircraft design flaws and to design an interview
protocol. Through interviews with engineering students, we find initial evidence of an induced
variability bias among participants; more specifically, we find that participants choose analysis
techniques that are inconsistent with their own attribution of variability to physical mechanisms
in engineering systems.

It is important to note that this paper presents not only empirical data and findings related to how
engineers think about variability, but also presents a theoretical framework that can support
measurement and analysis of how engineers consider variability.

Background and Related Work

The Allowables Issue. Previous research in aerospace engineering describes the in-use
“allowables” design criteria, while more recent works critique these criteria. Safety-critical
material properties in aircraft design (such as the strength of material) are quantified using a
single-value allowed in design, appropriately called design allowables [1], [4], [5]. Some
statistical treatment of material properties is necessary as all manufactured components exhibit
unavoidable variability in their properties [6]. Different material properties are treated with
different classes of allowable value; for instance, strength values are treated with a conservative
value called a basis value (operationalized as a lower tolerance interval [7]), while modulus
properties such as elasticity are treated with a typical value (operationalized as a sample mean
value). However, modern materials such as advanced composites exhibit considerable variability
in their matrix properties. Treating these properties with typical values leads to a variance deficit
that can potentially result in dangerously-undersized structural components [1].
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Note that rigorous procedures that comprehensively solve these issues are available [8]; these
techniques lie within a literature of analysis and design under uncertainty that spans multiple
disciplines. However, it is not common to see these rigorous treatments of uncertainty in
industrial use, and even within aerospace engineering the inconsistent treatment of variability is
not widely recognized; for instance, a NASA reference on probability and statistics [9] mentions
“basis values” but makes no mention of “typical values” whatsoever. To the best of our
knowledge, there is very little work studying engineering knowledge and treatment of variability.

Related Statistics Education Literature. A great body of work studying variability belongs to
statistics education, as variability is core to statistical thinking [10]. Literature in the early 2000s
characterized the research on students’ understanding of variability as limited [11]. Furthermore,
research on how engineers apply statistical techniques to a dataset, and especially how they make
design decisions, is still lacking. An exception, and of particular interest to the present work, is a
study of Hjalmarson [12], who developed a data-analysis task to study how engineering students
use statistics to make operations decisions. Hjalmarson noted "[a]lthough the students
successfully computed statistics that would measure variability, the justification for the use of
particular statistics was sometimes lacking or the students’ strategy seemed to be to compute
everything they knew for the sake of computation, without considering what might be applicable
or the relationship between statistical measures." These results suggest a disconnect between the
use of statistical measures (analysis procedure) and the underlying problem features (attribution),
an observation that informs the design of the present study.

Engineering as a discipline is primarily interested in statistical thinking insofar as it supports
design and control. However, past work in statistics education has used theoretical frameworks
that give primacy to concepts that do not comprehensively treat engineering concerns; for
instance the framework of Peters [13] considers statistical experimental design, data analysis,
and statistical modeling. Missing from this extant framework are the means to determine when
an engineer should or should not treat variability as random, and how to link observed variability
to engineering outcomes of interest.

Thus, for our work we found it necessary to develop a theoretical framework that would better
characterize variability and operationalize how one might study it in engineering contexts. We
began by drawing on both statistics education literature and classical work on engineering
quality. The work of quality experts such as Shewhart [6] and Deming [14] focused on
recognizing variability as either under statistical control or due to a traceable cause. These ideas
are termed chance and assignable cause [6]. Additionally, the work of statistics educators Wild
and Pfannkuch [10] distinguishes between real and induced variability. We term this dichotomy
real and induced source, and further develop the concept to support the analysis of engineering
systems. We elaborate on these below.
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Given this background, our research questions (RQ) for this study were:
● (RQ 1) What theoretical framework can support the analysis of variability in engineering,

specifically the aircraft allowables criteria?
● (RQ 2) What factors related to variability can explain the design and use of faulty

aerospace allowables, particularly their going undetected for a half-century?
● (RQ 3) With regards to engineering education, do any factors encourage engineers to use

a more problem-relevant statistical analysis?

Theoretical Work

Proposed Theoretical Framework

The theoretical framework for this study builds upon classic ideas in the engineering quality and
statistics education communities. Figure 1 illustrates the core of this framework in the
cause-source variability quadrants. These quadrants are formed by the intersections of
independent dichotomies: the cause and source dimensions.

Figure 1. The Cause-Source variability quadrants.

The Cause Dimension. The concept of chance and assignable cause was formulated in the
engineering quality community to support the study and reduction of variability in manufacturing
[6], [14]. Using definitions from Reference [15], we define assignable cause as any form of
variability that is practical to describe and control / represent deterministically, while chance
cause is any form of variability that is impractical to describe deterministically and is
best-described with a random variable. For example, in aerospace design it is impractical to
completely eliminate cracks in structural components. Thus, aerospace engineers treat the size of
cracks present in a component as a random process---a chance cause [16]. However, if consistent
issues arise in a particular manufacturing line, then manufacturing engineers will investigate to
identify the issue---perhaps they will find a failure to follow experimental procedure [17]---and
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work to eliminate the assignable cause. The concept of cause provides practical guidance on
when to treat variability as random, and when to invest resources to investigate further.

The Source Dimension. The concept of real and induced source appears in the statistics
education work of Wild and Pfannkuch [10], [18], but it is presented as self-evident and without
a precise definition. To help clarify our use of these terms, we adopt the definitions of Reference
[15]: The scopus is the real value that one aims to study, while the measurement is the value one
manages to record. Thus, variability is said to be real if it affects the scopus, and induced if it
affects the measurement only. Figure 2 illustrates this definition schematically, where a source of
real chance variability (called deviation) first generates the scopus, and an additional source of
induced chance variability (called noise) corrupts the scopus to form the measurement.

Figure 2. Schematic depiction of the scopus and measurement, relating real and induced
variability that generate and corrupt the scopus (respectively).
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For example: All materials exhibit unavoidable variability in their properties. The appropriate
scopus is not the “mean” property, but rather the as-built properties that will determine as-built
performance. Material variability can arise due to small fluctuations in the manufacturing
process, generating real variability in their mechanical properties: a source of deviation.
However, measurement techniques themselves are imperfect, generating induced variability in
the characterization of those properties: a source of noise. Statisticians characterize multiple
sources of variability by preparing multiple specimens and taking multiple measurements of each
specimen: a nested experimental design [17].

Aspects of Reasoning. In addition to theorizing how variability might be operationalized in the
engineering context, we also study two aspects of how participants consider variability: analysis
and attribution. We define a participant’s analysis as the mathematical technique they use to
study a scenario, and their attribution as the physical mechanisms they use to explain the
existence of variability. Analysis and attribution can be real or induced, and need not be in
agreement, as we will see below.

Study of Allowables by Theoretical Framework

At this point, we revisit the allowables issue [1] in light of the theoretical framework, both to
illustrate the utility of the theoretical framework and to address RQ 1: finding a theoretical
framework to understand the allowables issue. First, note that materials characterization and
manufacturing follows a highly-controlled process that seeks and eliminates assignable causes
[4], [19]; thus, in design it is assumed that variability is largely chance cause (Fig. 1, Noise and
Deviation quadrants).

A defensible scopus for aerospace manufacturing is the realized1 material property of each
manufactured component: While typical or nominal material properties may have utility in
describing or selecting materials, the realized properties are what dictate probabilities of failure
and hence safety. Fundamentally, there exists real, unavoidable variability in realized material
properties, as evidenced by prior studies on manufacturing [6], [14], [20]. Aerospace engineers
use basis values (conservative values) to quantify this variability when treating a material’s
strength. However, aerospace engineers use typical values (the sample mean) when treating
properties such as the elastic modulus [21]. This typical statistic is understood to be a
low-reliability quantity, as it is referred to as having “a statistical connotation of 50% reliability
with a 50% confidence” [19]. Put differently, the sample mean does not acknowledge variability.
Given the dependence of the buckling failure mode on the elastic modulus [22], it is obvious that
the use of such a low-reliability allowable would translate to a low-reliability structure.

1 Note that realization is a statistical term that connotes an observed value of a random variable; a realized material
property is the as-manufactured performance of a part, rather than the nominal performance. Allowables are used in
part because realized strength values can be less than their nominal values, which has important ramifications for
structural safety.
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However, the use of the sample mean would be justified if the underlying material variability
were induced only. In this (counterfactual) case, there would exist a “true” material property, and
standard statistical assumptions (zero-mean additive noise) would endorse the sample mean as an
efficient estimate of this posited true value [23], [24]. Thus, we associate a conservative statistic
(such as a tolerance interval [7], or even a minimum value) with an analysis assuming real
variability, and a central statistic (such as the mean or median) with an analysis assuming
induced variability only. Table 1 maps the two forms of aircraft allowable to the cause-source
variability quadrants.

Table 1. Aircraft allowables mapped to the cause-source quadrants. Note that a typical value is
inappropriate for treating a source of deviation, while a basis value would be overly-conservative
for a source of noise.

Chance Cause Assignable Cause

Noise (Typical value appropriate) Mistake Induced Source

Deviation (Basis value appropriate) Anomaly Real Source

Thus, we can summarize the contradiction in aerospace engineers’ behavior with allowables in
terms of the theoretical framework: Aerospace engineers use quality control techniques to
eliminate assignable causes, endorsing a statistical approach to analyzing the remaining chance
causes. However, aerospace engineers select specific analysis techniques that suggest the source
of variability is real for strength properties, but induced for engineering moduli. The assumption
of induced variability is counterfactual to the manufacturing reality, thus the use of typical values
is potentially dangerous.

Note that through studying published literature we have limited means to study engineers’
attribution of variability. Thus, we have designed and conducted interviews with engineering
students to study both their analysis and attribution of variability. Further, since only the source
axis is operative in the allowables scenario, we designed our interview protocol to emphasize
chance causes while probing differences between real and induced sources.

Hypotheses

In aircraft design, only particular material properties are treated with basis values; it is the default
to treat material properties as a typical value [1]. Given the analysis above (Tab. 1), this suggests
that aerospace engineers treat variability as induced by default. Further, some features of the
basis value-treated properties (strength values) seem to encourage engineers to treat the
variability as a real source. To support RQ 2, we formalized these observations as hypotheses
and set out to test the following:
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1. Induced variability bias: In the absence of provoking problem features, engineering
students will tend to reason (use analyses and give attributions) more aligned with
induced than real variability.

2. Real provocations: Problem features such as safety-critical applications or obviously
questionable assumptions will tend to encourage engineering students to reason in terms
of real variability at a higher rate (compared to the base-rate implied by hypothesis 1).

Empirical Methods

In this section we describe the sample of data collected, the interview protocol, and the
qualitative data coding scheme. This work was determined to be IRB Exempt by the Brandeis
IRB under protocol number #21164R-E.

Sample

Seven participants were recruited from an Engineering college in the Northeast United States for
hour-long interviews on Zoom. They included both students and recent graduates of the college
and were required to have coursework in at least one of material science, analysis of structures,
or college-level statistics. These selection criteria helped ensure participants could interpret the
interview questions.

Interview Protocol

The interview was structured in three primary parts: a brief warmup to acclimate the participant
to the interview format, a structured part focused on analyzing materials data, and an
unstructured part where participants defined and analyzed their own scenario. The present work
considers results from the structured part only.

The interview’s structured portion included four questions, summarized in the bullets below. To
assess the real provocations hypothesis, these questions were designed to start with little context,
and iteratively introduce more “provoking” problem features. The bullets below summarize the
four questions, but further detail is provided in the Appendix.

1. Aluminum: No special problem features, considers material elasticity
2. Steel: Emphasizes safety-critical design task, considers material strength
3. Compare: Re-casts Aluminum question as a safety-critical buckling design task
4. Critique: Introduces questionable “true” value assumption to the Steel task

Since we were interested in the analysis procedure that participants would select, interview
questions do not specify statistical methods, cf. [12]. Interviews were transcribed, providing the
corpus for data coding, described next.
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Coding Scheme

Transcripts were analyzed and coded at the grain-size of individual questions: Participants’
responses were coded in terms of their complete response to each of the four questions. For each
question, coding consisted of determining the absence or presence of indicators of real/induced
analysis or attribution. This resulted in a set of 4 (=2x2) boolean values for each question,
corresponding to the four codes: real analysis, induced analysis, real attribution, induced
attribution. Across four questions, this yields 16 codes per participant. Note that, since
participants could provide multiple answers in responding to a single question, many transcripts
were found to exhibit indicators for multiple codes; for instance, both real and induced analyses.

In line with the Study of Allowables (Tab. 1), we took the use of a statistic measuring central
tendency (e.g. mean, median) as an indicator of an induced analysis, while approaches that
acknowledged spread (e.g. standard deviation) or targeted extreme values (e.g. a quantile) as an
indicator of a real analysis. Reasons for variability that corresponded to the data collection
mechanism indicated induced attribution, while reasons that were inherent to the object of study
indicated real attribution. Table 2 below summarizes the indicators for the coding scheme.

Table 2. Indicators used for coding scheme.

Indicators

Analysis Real Use of non-central quantity (e.g. quantile, minimum), or use of
measure of spread (e.g. variance)

Induced Use of measure of central tendency (e.g. the mean)

Attribution Real Variability attributed to phenomena occurring inside the part /
material

Induced Variability attributed to phenomena occurring during material
characterization

Example coding. To illustrate the coding scheme, we provide excerpts from a transcript and the
resulting codes. For instance, in response to the Aluminum question, one participant responded:

“I would take a…I would take an average first, of the different data points you've got
there because it looks like they all fall within the same range of about 10,00 to 10,700 ksi.
I’d start by taking a statistical mean and….for my sake, I would, I would compare it to
the elasticity of other materials, just so that I get some sense of how it compares to other
known materials.”



Since this participant took an average but did not mention any other statistics, their transcript was
coded as {induced analysis: true; real analysis: false}. However, for the Steel question, the same
participant stated,

“If, for some reason the material had to be used anyway, like if this were some
experimental material that has a wide variability in its yield strength, but is super light or
something like that, then I would probably look at the, at the lowest yield strength that
was available, and probably build in some margin there to go “well this is on the low end,
but also I don't know how low the range could fall, but I do not have enough engineering
experience to know how to, how to draw that lower, that lower baseline. So I’d have to
stop there.”

For the Steel question, this participant did not mention the mean, and instead chose the smallest
observed value. Thus, their transcript was coded as {induced analysis: false; real analysis: true}.

Returning to the Aluminum question for the same participant, when asked in a follow-up what
might be reasons that the table values were not all the same, the participant stated,

“Okay – so – if – so that machine, well, you could have –  well one obvious source of
error would be if the machine is not calibrated correctly. … But I wonder how they were
stored? I wonder if there were – if the storage conditions – like if some were very cold,
some were very warm, what effect that would have. I don't know how big of a difference
the environment itself would make. I imagine if the environment weren't at a constant
temperature that... that's something that could affect the modulus of elasticity.”

For the Aluminum question, this participant noted reasons for variability including measurement
(“if the machine is not calibrated correctly”) and intrinsic properties of the aluminum specimen
(“that’s something that could affect the modulus of elasticity”). Thus, their transcript was coded
as {induced attribution: true, real attribution: true}.

To assess the reliability of the coding scheme, two analysts independently coded three transcripts
and their results were compared. The resulting codes had a Cohen’s kappa of 0.71, indicating
substantial agreement across the subset [25]. The analysts came together to reconcile differences
on this subset of the data, and one analyst coded the remaining interviews: These are the codes
used in the Results section below.

Results

The overall results, summarized in Table 3, are in agreement with our hypotheses: Participants
start with a bias towards induced variability (induced variability bias), as participants gave
analyses and attributions at a higher count for induced (12) than real (11) for the Aluminum
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question. This result suggests a very modest induced variability bias; however, we will see
below that disaggregating analysis and attribution provides a more nuanced view. Participants
tend to reason more in terms of real variability when exposed to problem features such as design
criticality (as with the Steel question, 7 induced to 12 real), or when faced with questionable
assumptions (as with the Critique question, 5 induced to 12 real).

Interestingly, the Compare question does not provoke an increased real response: The Compare
question has 7 real responses, as compared with 12 real responses for the Steel question. This
suggests that participants do not recognize the design-critical issues in the buckling design
problem. It is possible that the causal pathway from “variability in elasticity” to “variability in
buckling strength” to “variability in safety” was not so obvious as “variability in tensile strength”
to “variability in safety.” This has ramifications for the design of engineering pedagogy, which
we return to in the Discussion.

Table 3. Counts of induced and real responses for all n=7 participants, out of 14 possible counts.

Question Induced Real

1. Aluminum 12 11

2. Steel 7 12

3. Compare 8 7

4. Critique 5 12

Disaggregating by analysis and attribution (Table 4) provides a richer view of participant
reasoning in the Aluminum question. Note that all participants (7/7) provide at least one real
attribution for variability in the first question, and yet only a small majority (4/7) deploy a real
analysis technique on the data. This suggests a disconnect between analysis and attribution
among participants. The striking decrease in induced analysis from the Aluminum (6/7) to the
Steel question (3/7) indicates that participants are able to choose different data analysis
approaches when subject to real provocations. Thus, we see evidence that an induced variability
bias may indeed exist among engineering students; however, this bias seems to manifest in terms
of analysis technique, and may be overturned by real provocations.



Table 4. Counts of induced and real responses for all n=7 participants, disaggregated by analysis
and attribution. Out of 7 total possible counts.

Question Induced
Analysis

Real
Analysis

Induced
Attribution

Real
Attribution

1. Aluminum 6 4 6 7

2. Steel 3 5 4 7

3. Compare 6 5 2 2

4. Critique 2 7 3 5

Discussion

Our results offer a potential explanation for how the allowables design error related to variability
went undetected in aerospace practice for so many decades (RQ 2). The induced variability bias
and real provocations concepts can explain the design decisions: If engineers tend to analyze
variability as induced, this can explain why most material properties are analyzed using a sample
mean in aerospace design. Further, the obvious failure connotations of material strength serve as
a real provocation, encouraging engineers to use statistical procedures that treat the variability as
real, providing an answer to RQ 3. Finally, the disconnect between analysis and attribution
suggests a mechanism for undetected errors: Without the means to critique self-inconsistent
statistical procedures, the errors in the design allowables approach could easily go undetected.

Surprisingly, we found that participants were adept at attributing variability to real physical
mechanisms, but did tend to exhibit an induced variability bias in their analysis procedures.
Given the sample limitations (below), it is difficult to tease apart the factors that may lead to this
disconnect. Regardless of the underlying cognitive mechanism, this is an important discrepancy
to understand and address in future engineering pedagogical work.

Limitations

Given the novelty of this work and the small sample size (n=7), the results above should not be
taken as accurate estimates for population inference: However, the results above are useful for
comparisons across questions / code types.

Attributing sources of variability for the interview questions relies on a background in
structures/materials, while selecting an analysis procedure relies on statistical reasoning.
Requiring participants to have relevant background in both areas would have severely restricted
participant recruitment for this study. However, since participants were only required to have
background in one of the required subject areas, we cannot exclude the possibility that some of
the patterns above are due to participants’ unfamiliarity in one of the topic areas. This is



especially salient for the Analysis category, as the mean is known to be a more accessible
procedure than e.g. the standard deviation [26]. This particular limitation complicates the
interpretation of the observed induced variability bias; this could be due to unfamiliarity with
other possible statistics, a failure to integrate statistical reasoning with knowledge of materials,
or other factors not related to participant educational background. However, given the
generally-acknowledged poor state of statistics education [27], we believe this is a limitation of
interpretation, not in the results themselves. The existence of an induced variability bias is
problematic, regardless of its ultimate cause.

Finally, we studied engineering students in order to explain the behavior of practicing engineers.
While the students do have training and experience relevant to aerospace structural design, none
are full-time aerospace engineers. This extrapolation clearly limits the degree of confidence we
can have in the external validity of our findings. While practicing engineers begin their careers as
engineering students, practicing engineers also experience further skills development and
professional enculturation that will tend to modify their behavior and cognition. Thus, we must
regard our explanation of the historical allowables record as tentative.

Future work

The real provocations concept is a useful, potentially-generalizable mechanism to help engineers
deploy analysis procedures appropriate for real variability. A potential educational intervention
could aim to help engineering students see the potential safety hazards in more subtle cases of
variability propagation; for instance, the lack of a real provocation response to the Compare
question described above suggests that students need help reasoning through how variability in
elasticity propagates to variability in buckling safety. Explicit instruction in variability (and
uncertainty) propagation may help engineers leverage the real provocations mechanism, and
expand their engineering design toolkit.

The present study was inspired by questions of structural design in aerospace engineering.
However, variability is omnipresent in engineering. We hope that this study inspires investigators
from other disciplines to consider: What sources of variability are important in their own
discipline? Are those sources real or induced? What sorts of attributions and analyses do
engineers in their discipline deploy? Does an induced variability bias exist in their own field?
And what kind of real provocations can educators highlight to encourage a more
statistically-grounded treatment of variability?
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Appendix

Interview Questions

The following is a simplified listing of the interview questions. Data tables used in the study are
given below.

(1. Aluminum) “Look at this table of material property data. These are the measured elasticity
values for a rolled aluminum alloy of the same composition and processing method. Reminder,
elasticity is a property of a material that determines how stiff a part is, so a material with higher
value of elasticity is more stiff. How would you use this data to describe the elasticity of this
alloy?”

“The measured elasticity values are not all the same; what are some reasons why that might be?”

(2. Steel) “Look at this table of material property data. These are the measured yield strength
values for a cast stainless steel of the same composition and processing method. Imagine you
were going to design a safety-critical structural component, loaded in tension, using this cast
steel. How would you use this data to help design that component?”
“The measured elasticity values are not all the same; what are some reasons why that might be?”

(3. Compare) “Think back on your approach to the aluminum elasticity table: How did your
approach there compare with your approach to the steel strength scenario?”

“Now imagine you were going to design a safety-critical structural member, loaded in
compression, using the aluminum alloy from before. Would you use a different approach to
process the aluminum data?”

(4. Critique) “Suppose a colleague of yours analyzes the Steel strength data, and plans to use the
data to design a safety-critical part. He tells you ‘The smallest value we saw was 155.6 ksi, so
the true strength is probably around 155 ksi.’ What do you think about his analysis?”

https://www.zotero.org/google-docs/?sJwSfm
https://www.zotero.org/google-docs/?sJwSfm
https://www.zotero.org/google-docs/?sJwSfm
https://www.zotero.org/google-docs/?sJwSfm
https://www.zotero.org/google-docs/?sJwSfm
https://www.zotero.org/google-docs/?sJwSfm
https://www.zotero.org/google-docs/?sJwSfm
https://www.zotero.org/google-docs/?sJwSfm
https://www.zotero.org/google-docs/?sJwSfm
https://www.zotero.org/google-docs/?sJwSfm


Data Tables

Data used in the Aluminum question [28].
Aluminum Elasticity

Observation Elasticity
(ksi)

1 10600

2 10600

3 10400

4 10300

5 10500

6 10700

7 10000

8 10100

9 10000

10 10700

https://www.zotero.org/google-docs/?hzsvK0


Data used in the Steel question [29].
Steel Strength

Observation
Tensile Yield
Strength (ksi)

1 157.0

2 159.6

3 155.6

4 165.8

5 157.4

6 158.4

7 157.6

8 156.4

9 157.7

10 155.7

https://www.zotero.org/google-docs/?m9rXly

